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Wall-Induced Density Profiles and Density
Correlations in Confined Takahashi Lattice Gases
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We propose a general formalism to study the static properties of a system com-
posed of particles with nearest neighbor interactions that are located on the sites
of a one-dimensional lattice confined by walls (``confined Takahashi lattice
gas''). Linear recursion relations for generalized partition functions are derived,
from which thermodynamic quantities, as well as density distributions and
correlation functions of arbitrary order can be determined in the presence of an
external potential. Explicit results for density profiles and pair correlations near
a wall are presented for various situations. As a special case of the Takahashi
model we consider in particular the hard rod lattice gas, for which a system of
nonlinear coupled difference equations for the occupation probabilities has been
presented by Robledo and Varea. A solution of these equations is given in terms
of the solution of a system of independent linear equations. Moreover, for zero
external potential in the hard-rod system we specify various central regions
between the confining walls, where the occupation probabilities are constant
and the correlation functions are translationally invariant in the canonical
ensemble. In the grand canonical ensemble such regions do not exist.

KEY WORDS: Density functional theory; nonuniform lattice gases; non-
linear difference equations; density correlations; confined systems; Takahashi
interaction; hard rods.

1. INTRODUCTION

The understanding of the static and dynamic behavior of fluids in confined
geometries is a problem of active current research.(1, 2) This research is
largely motivated by technological applications where one wants to create
small surface structures with suitable physical and chemical properties.(3)

The question, how the formation of such structures is influenced by con-
fining walls, has raised the interest in many basic phenomena, such as the
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development of density profiles, pair correlations and ordering effects at
surfaces, (4) wetting transitions, (5, 6) or a variety of surface induced kinetic
processes.(7) In general, an exact analytical treatment of the various effects
is not possible and one has to rely on approximation schemes. Well estab-
lished techniques for this purpose are the density functional theory with its
many variants (see ref. 8 and references therein), the cluster variation(9) and
path probability method, (10) as well as the classical thermodynamic pertur-
bation theories (see e.g., ref. 11). In one-dimensional fluid systems,
however, exact results can be obtained for special models. Such results have
their merits in establishing ``boundary conditions'' for the development of
approximate theories in higher dimensions d>1 in the sense that these
should become exact for d=1. Physically, this issue in particular pertains
to theories for confined systems with tunable confinement, allowing a
``dimensional crossover'' from the case d>1 to d=1.(12) Exact findings also
provide the possibility to systematically test the quality of approximations.
Moreover, for many phenomena, such as e.g., the emergence of the well-
known density oscillations of fluids near hard walls, the dimensionality
does not seem to play a crucial role, and valuable insight into the origin
of these phenomena may be gained by investigating appropriate one-
dimensional reference systems.

The first exact density functional in d=1 was set up by Percus(13) for
a fluid of hard rods. This functional yields an integral equation for the den-
sity profile in an arbitrary external potential. Later Percus showed that a
further exact density functional can be written down for the special ``sticky
core'' model(14) that, in addition to the hard-rod repulsion, includes a
``zero-range'' attractive force between nearest neighbor rods. This was sub-
sequently generalized to finite-range forces between neighboring rods.(15)

A generalized discrete version of the continuum hard-rod fluid on a linear
chain was studied by Robledo and Varea.(16) They derived an exact func-
tional for the mean occupation numbers of the rod centers on the chain,
which, by taking the continuum limit, allowed them to recover the con-
tinuum density functional of Percus (for a review on classical density func-
tionals, see ref. 17). Within this theory, the discrete hard-rod model leads
to a rather complicated system of nonlinear finite difference equations for
the mean occupation numbers in an arbitrary external potential, whose
numerical solution requires a considerable computational effort.

In this article we will show that a more general discrete one-dimen-
sional system can be considered, which allows one to calculate bulk and
surface thermodynamical properties as well as equilibrium density profiles
and density correlations in arbitrary external potentials. The system is an
extension of the continuum Takahashi model(19) to a lattice gas model, in
which only neighboring particles interact with each other. We first show
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that the canonical and grand canonical partition functions of this
``Takahashi lattice gas'' (TLG) obey simple recursion relations and that
density profiles and density correlations can be conveniently calculated
from the partition functions due to the one-dimensional nature of the
model. Since the TLG contains as a special case the hard-rod model
studied by Robledo and Varea(16) (for which the interaction potential
would be infinite for interparticle distances smaller than the rod length and
zero else), we can give a simple solution of the nonlinear difference equa-
tions derived in ref. 16. In this context we found it worthwhile to rederive
the central formulae given in ref. 16. We will apply our formalism to a
system of hard-rods confined both by hard and soft walls, and also to a
system of particles, which in addition to the thermal hard-rod repulsion
experience a finite interaction potential over a limited range. For these
different cases density profiles and density correlations near the confining
walls will be discussed in detail and compared with each other.

2. TAKAHASHI LATTICE GAS

In the TLG we consider N particles at positions ik , k=1,..., N, on a
linear chain with M sites i=1,..., M. No more than one particle is allowed
to occupy a given lattice site. Two neighboring particles separated by n&1
vacant lattice sites interact via a potential v(n). There is no interaction
between particles that are not nearest neighbors, that means between par-
ticles that have at least one other particle in between them. In addition the
particles experience an external potential u(i) and it is assumed that two
confining walls are present at the boundary sites i=0 and i=M+1. These
are modeled by two additional particles that are held fixed at the boundary
sites. The energy of a particle configuration 1�i1< } } } <iN�M is then
given by

;H= :
N

k=1

u(ik)+v(i1)+ :
N

k=2

v(ik&ik&1)+v(M+1&iN) (2.1)

where ;=1�kBT and we have assumed for simplicity that the particles at
the boundary sites are the same as those on the chain. It will become clear
in the following that one could also consider a modified interaction with
the walls.

2.1. General Case of Arbitrary External Potential

In the presence of a (non-constant) external potential u(i), it is con-
venient to define a generalized canonical partition function by
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Z(N, M$, :)= :
1�i1< } } } iN�M$

exp &_ :
N

k=1

u(ik+:)+v(i1)

+ :
N

k=2

v(ik&ik&1)+v(M$+1&iN)& (2.2)

for integers :�0 and M$+:�M. Equation (2.2) defines Z(N, M$, :) if
N�M$, while for N>M$ we set Z(N, M$, :)#0. Note that for :=0 and
M$=M we recover the ordinary partition function Z(N, M )#Z(N, M, 0).
As far as only thermodynamic quantities shall be calculated, we could limit
ourselves to the conventional form, but to evaluate density profiles and
density correlations for the TLG, we need to consider the generalized func-
tions (see below). Separating the summation over the positions l=iN of the
rightmost particle, we can write

Z(N, M$, :)= :
M$

l=N

exp[&v(M$+1&l )&u(l+:)]

_ :
1�i1< } } } <iN&1�l&1

exp &_ :
N&1

k=1

u(ik+:)+v(i1)

+ :
N&1

k=2

v(ik&ik&1)+v(l&iN&1)&
= :

M$

l=1

exp[&v(M$+1&l )&u(l+:)] Z(N&1, l&1, :) (2.3)

In the last line we could start the summation from l=1 because of our
setting Z(N, M$, :)#0 for N>M$. The recursion relation (2.3) is so far
valid for N>1. It becomes valid also for N=1 if we set Z(0, M$, :)#
exp[&v(M$+1)].

From Eq. (2.3) we readily derive a recursion relation for the analogous
generalized grand partition function,

0(*, M$, :)= :
�

N=0

Z(N, M$, :) *N

=exp[&v(M$+1)]

+* :
M$

l=1

exp[&u(l+:)&v(M$+1&l )] 0(*, l&1, :) (2.4)
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As before, we define 0(*, M )#0(*, M, 0). This recursion relation (2.5) is
valid for M$>1, but can be made valid also for M$=1 if we set 0(*, 0, :)
=exp[&v(1)]. The fugacity * determines, for given M, the mean number
N(*, M ) of particles in the system.

Using the recursion relations (2.3, 2.4) one may calculate all thermo-
dynamic properties for a given interaction v(n) and external potential u(i)
by taking :=0 and M$=M. We now show how one can calculate also
density profiles and correlations (of arbitrary order), once Z(N, M$, :) or
0(*, M$, :) has been calculated from Eqs. (2.3, 2.4). To this end we first
determine the probability w(l, r) to find the r th particle at position ir=l,

w(l, r)=Z&1(N, M ) :
} } } <ir&1<l<ir+1< } } }

exp &_v(i1)+ :
N

k=2

v(ik&ik&1)

+v(M+1&iN)+ :
N

k=1

u(ik)&
=exp[&u(l )] Z&1(N, M )

_ :
1�i1< } } } <ir&1�l&1

exp &_v(i1)+ :
r&1

k=2

v(ik&ik&1)

+v(l&1+1&ir&1)+ :
r&1

k=1

u(ik)&
_ :

l+1�ir+1< } } } <iN�M

exp &_v(ir+1&l )+ :
N

k=r+2

v(ik&ik&1)

+v(M+1&iN)+ :
N

k=r+1

u(ik)&
=exp[&u(l )] Z&1(N, M ) Z(r&1, l&1)

_ :
1� j1< } } } < jN&r�M&l

exp &_v( j1)+ :
N&r

k=2

v( jk& jk&1)

+v(M&l+1& jN&r)+ :
N&r

k=1

u( jk+l )&
=exp[&u(l )]

Z(r&1, l&1) Z(N&r, M&l, l )
Z(N, M )

(2.5)

In the second step we have introduced the shifted particle positions
js=ir+s&l for s=1,..., N&r. By doing this, u(ik) transforms to u( jk+l) and
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it becomes clear now why we had to introduce the generalized partition
function Z(N, M$, :) with :{0. In the canonical ensemble the probability
p(l; N, M ) for the site l to be occupied is then given by

p(l; N, M )= :
N

r=1

w(l, r)=
exp[&u(l )]

Z(N, M )
:
N

r=1

Z(r&1, l&1) Z(N&r, M&l, l )

(2.6)

In the grand canonical ensemble the convolution in Eq. (2.6) factorizes and
we obtain the corresponding occupation probability

p~ (l; *, M )=* exp[&u(l )]
0(*, l&1) 0(*, M&l, l )

0(*, M )
(2.7)

We like to note that for a symmetric external potential, u(i)=u(M+1&i),
it follows that 0(*, M&l, l )=0(*, M&l ). Hence it suffices to calculate
0(*, M$, :) from Eq. (2.4) for :=0 to obtain the density profile in this
symmetric case.

By an analogous decomposition of the partition function into products
of generalized partition functions (corresponding to various system sizes)
one can derive the joint probabilities ps(l1 ,..., ls ; N, M ) to find the sites
l1< } } } <ls being occupied in the canonical ensemble,

ps(l1 ,..., ls ; N, M )=
exp[&�s

k=1 u(lk)]
Z(N, M )

_ :
1�r1< } } } <rs�N {Z(r1&1, l1&1) Z(N&rs , M&ls , ls)

_ `
s&1

k=1

Z(rk+1&rk&1, lk+1&lk&1, lk)= (2.8)

From this we obtain the corresponding joint probabilities in the grand
canonical ensemble,

p~ s(l1 ,..., ls ; *, M )=
*s exp[&�s

k=1 u(lk)]
0(*, M )

0(*, l1&1) 0(*, M&ls , ls)

_ `
s&1

k=1

0(*, lk+1&lk&1, lk) (2.9)

Note that for s=1 Eqs. (2.8), (2.9) reduce to Eqs. (2.6), (2.7). From
Eqs. (2.6), (2.8) or Eqs. (2.7), (2.9) one can readily calculate density
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profiles and density correlations of arbitrary order in the canonical or
grand canonical ensemble for arbitrary interaction v(n) and external poten-
tial u(i).

2.2. Special Case of Vanishing External Potential

In case of a vanishing (or constant) external potential it is not needed
to introduce the generalized partition functions in Eqs. (2.2), (2.4) and
accordingly one can set the third argument : in 0(*, M, :) equal to zero
in all formulae in Section 2.1. The occupation probabilities p(l; N, M ) and
p~ (l; *, M ) in Eqs. (2.6), (2.7) can be written as

p(l; N, M )= :
N

r=1

Z(r&1, l&1)
Z(N&r, M&l )

Z(N, M )
(2.10)

p~ (l; *, M )=*
0(*, l&1) 0(*, M&l )

0(*, M )

and analogous simplifications are obtained for the joint probabilities of
higher order in Eqs. (2.8) and (2.9).

Moreover, we can solve the recursion relations (2.3), (2.4) explicitly in
terms of the generating functions H(N, s)=��

M=0 Z(N, M ) sM and G(*, s)
=��

M=0 0(*, M ) sM, which are explicitly given by

H(N, s)=
.(s)N+1

s
, G(*, s)=

.(s)
s[1&*.(s)]

(2.11)

with

.(s)= :
�

l=1

exp[&v(l )] sl (2.12)

If v(l ) has a finite range, that means v(l )=0 for l�l0 , we obtain from
(2.11) G(*, s)=P(*, s)�Q(*, s), where P(*, s) and Q(*, s) are polynomials
in s of degree to l0&1 and l0 , respectively. According to a theorem for
rational generating functions, (20) 0(*, M ) then has the form 0(*, M )=
�k

j=0 cj (*, M ) sj (*)&M, where s j (*), j=0,..., k are the distinct zeros of
Q(*, s) with multiplicities dj , and cj (*, M ) are polynomials in M of degree
less than dj . The moduli of the zeros sj are considered to be ordered,
|s0 |�|s1|� } } } �|sk |.

279Confined Takahashi Lattice Gases



As shown in Appendix A, s0 is real with 0<s0<1, d0=1, and |sj |>s0

for j=1,..., k. Hence we can write 0(*, M )=s&M
0 [c0+�k

j=1 cj (M )(s0�sj )
M]

and obtain

0(*, M )tc0(*) s0(*)&M (2.13)

in the thermodynamic limit M � �. The one-to-one correspondence
between the fugacity * and the number density p� =N(*, M )�M in this limit
follows from the relations (see Corollary A.1. in Appendix A)

p� =.(s0)�[s0 .$(s0)], *=1�.(s0) (2.14)

Using the asymptotic limit for 0(*, M ) we obtain from Eq. (2.10)

p�(l; *)# lim
M � �

p~ (l; *, M )=*0(*, l&1) s l
0 (2.15)

In fact, as shown in Appendix A, Eqs. (2.14), (2.15) hold true even for a
more general interaction potential v(l ), which for l larger than some l

*
is

bounded and for l � � approaches zero. The analogous occupation prob-
ability p�(l ) in the canonical ensemble is the same as p�(l; *), if for given
p� the corresponding unique fugacity * is used (see Eq. (2.14) and
Appendix A). Moreover, the joint probabilities p~ s(l1 ,..., ls ; *, M ) in the
grand-canonical ensemble (and the corresponding ps(l1 ,..., ls ; N, M ) in the
canonical ensemble) factorize in terms of p�(l; *) in the thermodynamic
limit, that means

ps, �(l1 ,..., ls ; *)# lim
M � �

p~ s(l1 ,..., ls ; *, M )= p�(l1 ; *) `
s

k=2

p�(lk&lk&1 ; *)

(2.16)

For the special case of a finite range interaction potential considered above
(i.e., v(l )=0 for l�l0) there exists a constant C>0 such that | p�(l; *)& p� |
<Cl &e&l�!, where &�l0&2 is an integer, and !=&1� ln(r) with r=
max1� j�k [s0 �|sj |]<1.

3. HARD-ROD LATTICE GAS REVISITED

A particularly simple situation occurs, when the interaction potential
in Eq. (2.1) is given by

v(n)=vHR(n)#{�,
0,

0�n<2m
n�2m

(3.1)
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This potential can be viewed as describing a system composed of hard-rods
with lengths 2m (with hard walls at positions m and M+1&m due to the
fixed hard-rods at positions 0 and M+1).

Setting the mass density of the rods equal to unity, we can express the
local mass density pmass(l; N, M ) along the one-dimensional chain by the
occupation probabilities p(l; N, M ) (that refer to the rod centers) according
to

pmass(l; N, M )= 1
2 [ p(l&m; N, M )+ p(l+m; N, M )]

+ :
m&1

j=&(m&1)

p(l& j; N, M ) (3.2)

This formula holds true in the canonical as well as in the grand canonical
ensemble (if pmass(l; N, M ) is replaced by p~ mass(l; *, M ) and p(l; N, M ) by
p~ (l; *, M )). Note that the total number N of rods must be smaller than
M�2m.

3.1. Explicit Results for Homogeneous Systems

Density profiles and density correlations can be calculated explicitly in
the absence of an external potential by using the general method developed
in Section 2.2. From Eqs. (2.11) and (3.1) we find .(s)=s2m�(1&s) and
G(*, s)=s2m&1�(1&s&*s2m), and therefore

0(*, l )= :
�

n=0 \
l&(2m&1)(n+1)

n + *n

(3.3)

Z(N, l )=\l&(2m&1)(N+1)
N +

The occupation probabilities p(l; N, M ) and p~ (l; *, M ) in the canonical
and grand-canonical ensemble then follow by inserting these expressions
into Eq. (2.10), and the correlations analogously. One can show(18) that
p(l; N, M ) and p~ (l; *, M ) become maximal at the points l=2m and l=
M+1&2m closest to the walls. The reason for this is that by fixing the
position of a rod next to a wall the number of possible configurations (and
hence the entropy) for the remaining (N&1) rods will be largest.

Extending this line of thinking one would guess that the most likely
configuration near a wall is that where the rods are at positions l=2m, 4m,
6m,... . One then should expect oscillations in the occupation probabilities
to emerge with a period of typical size 2m. In fact, in the thermodynamic
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limit M � � one finds *=1�.(s0)=(1&s0) s&2m
0 with s0=(1&2mp� )�

[1&(2m&1) p� ] (see Eq. (2.14)). Moreover, as shown in Appendix B, the
zeros sj=|sj | exp(i%j ) (see Section 2.2) are all different, and Eq. (2.15)
becomes

p�(l, *)= p� + :
2m&1

j=1

cj (*) \ s0

|sj |+
l

e&i%j l (3.4)

The %j are in the open interval 0<%j<2?, that means the profile p�(l, *)
is a superposition of simple oscillating and exponentially decaying func-
tions. When considering a system of finite length, the effects induced by the
second wall at position M+1&m on the profile near the first wall at posi-
tion m are of order l�M in the grand-canonical ensemble and of order l 2�M
in the canonical ensemble. This is proven in Appendix B (more precisely,
l must be of order o(M1�2) in the canonical and of order o(M ) in the
grand-canonical ensemble to obtain vanishing contributions in the ther-
modynamic limit.) Hence, the finite size corrections to Eq. (3.4) become
small for large M. More surprising, if the number density is smaller than
half of that for the closed packed configuration, i.e., p� <1�4m, one can
show (see Appendix B) that in the canonical ensemble the p(l; N, M ) are
constant (l-independent) inside the central region R1#[l1 # N | l (1)�l1�
M+1&l (1)] with l (1)#(2m&1) N+1. At the outer boundary points l (&)

#l (1)&1 and l (+)#M+2&l (1), p(l �; N, M ) is different from the con-
stant value inside R1 , that means R1 is ``maximal'' in the sense that there
exits no other region of constant occupation probability enclosing parts
of R1 . It is interesting to note that | p(l (�)\1; N, M )& p(l (�); N, M )|=
1�Z(N, M ), that means the logarithm of the jump in the occupation prob-
ability at the boundaries of R1 provides the free energy B log Z(N, M ).
Furthermore, the joint probabilities ps(l1 ,..., ls ; N, M ) are translationally
invariant inside (``maximal'') regions Rs#[(l1 ,..., ls) # Ns) | l (s)<l1 ; 2m�
lk&lk&1 for k=2,..., s; ls�M+1&l (s)] with l (s)=(2m&1)(N+1&s)
+1,2 that means there exists a function f (x1 ,..., xs&1 ; N, M ) such that for
all (l1 ,..., ls) # Rs , ps(l1 ,..., ls ; N, M )= f (l2&l1 ,..., ls&ls&1 ; N, M ). Corre-
sponding regions have been found in the continuum version of the hard-
rod lattice gas, the so-called hard-core fluid model.(21) Moreover, if (lj+1&
lj )�[(2m&1)(N+1&s)+1] for all j=1,..., s&1, then ps(l1 ,..., ls ; N, M )
is constant for (l1 ,..., ls) # Rs (this was shown to hold true in the continuum
model for the pair distribution functions only(22)). As is shown in
Appendix B also, the situation is quite different in the grand-canonical
ensemble. Here, there exist no regions of constant occupation probabilities
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and translational invariance of the joint probabilities (except for trivial
cases2).

3.2. Free Energy Functional

An alternative way to treat the hard-rod lattice gas has been followed
in ref. 16. In this approach, which relates to density functional theory of
classical fluids, one considers the grand-canonical ensemble and defines the
occupation numbers xi , where xi=1 if site i is occupied by a rod center,
and xi=0 else.3 Note that these random variables are not independent:
Since the rods have size 2m we have to require xj=0 for | j&i |<2m if
xi=1. We define CM as the set of all allowed configurations [x i ]. The idea
then is to calculate explicitly the probability /(x1 ,..., xM) of an allowed con-
figuration (x1 ,..., xM) # CM by regarding the occupation probabilities
p~ i=(xi) as fixed (([ } } } ]) #� (x1 ,..., xM ) # CM

[ } } } ] /(x1 ,..., xM)). For given
p~ i it turns out that log /(x1 ,..., xM) depends linearly on the occupation
numbers (which is a fortunate feature of the hard rod system, see below).
By equating /(x1 ,..., xM) with the Boltzmann formula for all (x1 ,..., xM) #
CM we have

&log 0(*, M )=log /(x1 ,..., xM)+ :
M

s=1

xs[u(s)&+] (3.5)

where +=log * is the chemical potential. Taking now the expectation value
of (3.5) with respect to the xi , an exact density functional ;F( p~ 1 ,..., p~ M)=
&log 0(*, M ) of the p~ i is obtained.

In order to determine /(x1 ,..., xM) for (x1 ,..., xM) # CM we will make
use of a Markov property (that is valid only in the grand-canonical ensem-
ble). The constraint given by the finite rod lengths implies that the condi-
tional probabilities ws(xs | xs&1 ,..., x1) for the occupation number at site s
to be xs , given xs&1 ,..., x1 , are independent of x1 ,..., xs&2m . In other words
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2 By saying that the ps(l1 ,..., ls ; N, M) are not translationally invariant if l1< } } } <ls � Rs we
exclude the trivial case, where l1 and ls must be occupied by the first and last rod center,
respectively (i.e. for l1<4m and ls>M+1&4m). In this case, our system can be considered
as being composed of N&2 rods on a chain of length (ls&l1) and the ps(l1 ,..., ls ; N, M) are
translationally invariant then on trivial reasons.

3 For the following it is convenient to make the transformation l � l&(2m&1) of the site
positions and to change the system size according to M � M+4m&2. After these replace-
ments the rods at the boundaries are at positions &2m+1 and M+2m corresponding to
hard walls at positions -m+1 and M+m. Accordingly, the possible positions of the rod cen-
ters are 1,..., M.



ws(xs | xs&1 ,..., x1) fulfills the generalized Markov condition (which is
rather obvious here but can be proven rigorously too(18))

ws(xs | xs&1 ,..., x1)=ws(xs | xs&1 ,..., xs&2m+1) (3.6)

Due to this property we can express the joint probabilities /(x1 ,..., xM) as

/(x1 ,..., xM)=w1(x1) w2(x2 | x1) } } } w2m(x2m | x2m&1 ,..., x1) } } }

_ws(xs | xs&1 ,..., xs&2m+1) } } } wM(xM | xM&1 ,..., xM&2m+1)

(3.7)

It is convenient to formally extend the system to integers i�0 and to set
xi=0 for all &2m+2�i�0, such that we can write Eq. (3.7) in the com-
pact form

/(x1 ,..., xM)= `
M

s=1

ws(xs | xs&1 ,..., xs&2m+1) (3.8)

For calculating ws(xs | xs&1 ,..., xs&2m+1) we have to deal with two
cases only: (i) One of the given random variables xs&2m+1 ,..., xs&1 is equal
to one and the rest of them equal to zero, and (ii) all xs&2m+1 ,..., xs&1 are
zero. In all other cases there would be at least two of the xs&2m+1 ,..., xs&1

equal to one, but this is not allowed, because it would imply that rods
overlap. For the same reason we must have xs=0 in situation (i), that
means we obtain

ws(xs=0 | xs&1=0,..., xi=1,..., xs&2m+1=0)=1 (3.9)

The situation (ii) is more complicated. By definition we can write

ws(xs | 0,..., 0)=
}s, s&2m+1(xs , xs&1=0,..., xs&2m+1=0)
}s&1, s&2m+1(xs&1=0,..., xs&2m+1=0)

(3.10)

where }l, k(xl ,..., xk) is the joint probability for the configuration [x l ,..., xk]
to occur. For k&l<2m the normalization condition yields (again because
of the non-overlapping condition)

1= :
[xj ]

}l, k(x l ,..., xk)=}l, k(0,..., 0)+ :
l

j=k

} l, k(0,..., x j=1,..., 0) (3.11)

By definition we further have (for k&l<2m)

p~ i= :
[xj ]

xi} l, k(x l ,..., xk)=}l, k(0,..., x i=1,..., 0) (3.12)
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and hence it follows form Eqs. (3.11), (3.12),

}l, k(0,..., 0)=1& :
l

j=k

p~ j (3.13)

Inserting the }l, k(xl ,..., xk) from Eqs. (3.12), (3.13) into Eq. (3.10), we
obtain

ws(xs | 0,..., 0)={
1&tm(s)
1&t$m(s)

,

p~ s

1&t$m(s)
,

xs=0

xs=1
(3.14)

where we have defined tm(s)=�2m&1
j=0 p~ s& j and t$m(s)=�2m&1

j=1 p~ s& j=tm(s)
& p~ s . The results (3.9), (3.14) can be combined to express w(xs | xs&1 ,...,
xs&2m+1) in the general form

w(xs | xs&1 ,..., xs&2m+1)= p~ xs
s

[1&tm(s)](1&�j=0
2m&1 xs&j)

[1&t$m(s)](1&�j=1
2m&1 xs&j)

(3.15)

Note that the xi appear linearly in the exponents of the transition
matrix (3.15), such that by inserting (3.15) into Eq. (3.8), and taking the
logarithm, we find that log / is linear in the xi . Using Eq. (3.5) and averag-
ing over x i we finally obtain(16)

;F( p~ 1 ,..., p~ M)= :
M

s=1

p~ s[u(s)&+]+ :
M

s=1

p~ s log p~ s

+ :
M

s=1

(1&tm(s)) log(1&tm(s))

& :
M

s=1

(1&t$m(s)) log(1&t$m(s)) (3.16)

The functional (3.16) becomes minimal for the equilibrium density
profile p~ l#p~ (l; *, M ). The corresponding system of equations reads
(l=1,..., M )

�(;F)
�p~ l

( p~ 1 ,..., p~ M)=&++u(l )+log p~ l+ :
l+2m&1

s=l+1

log(1&t$m(s))

& :
l+2m&1

s=l

log(1&tm(s))=0 (3.17)
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It is clear that p~ (l; *, M ) from Eq. (2.7) (after making the transforma-
tions l � l&(2m&1) and M � M+2&4m) must solve (3.17). From a
mathematical point of view this is an interesting example, where a system
of coupled nonlinear difference equations (Eq. (3.17)) can be mapped by a
nonlinear transformation (Eq. (2.7)) onto a simple system of independent
linear difference equations (Eq. (2.4)). For the special case of a vanishing
external potential even an explicit solution exists (see Eqs. (2.10), (3.3)).
A direct proof that p~ (l; *, M ) from (2.7) indeed solves (3.17) is given in
Appendix C.

Next we rederive the exact free energy functional of Percus(13) by
taking the proper continuum limit of Eq. (3.16). To do this we first have
to note that Eq. (3.16) gets slightly modified, when it is viewed as resulting
from a discretized form of an originally continuous system. This continuous
system is defined by hard rods of length _ with positions 0< yi<L,
yi+1& yi�_. In a discretization, we may subdivide the continuous system
into M intervals Is (s=1,..., M ) of equal size 2y=L�M, and may set the
rod length 2m in the new discrete variables s equal to the integer part of
_L�M. The occupation number xs of the interval Is is defined to be zero,
if none of the yi # Is and one else. Then the joint probability q(i1 ,..., iN) to
find N rods at positions y1 ,..., yN in the intervals Ii1

,..., IiN
is,

q(i1 ,..., iN)=0(*, L)&1 `
N

k=1
|

Iik

dyk exp(&[u( yk)&+])

=0(*, L)&1 (2y)N exp \& :
N

k=1

[u(ik)&+]+ _1+
o(2y)

2y & (3.18)

Since there is a one-to-one correspondence between the sets [i1 ,..., iN] and
[x1 ,..., xM] we immediately obtain

/(x1 ,..., xM)=0(*, L)&1 (2y)�M
s=1 xs exp \& :

M

s=1

[u(s)&+] xs+ _1+
o(2y)

2y &
(3.19)

Repeating the steps leading to Eq. (3.16) we get a modified functional
F( p~ 1 ,..., p~ M), which is the same as given in (3.16) plus the term
[&(�s p~ s) log 2y+o(2y)�2y]. The p~ s are related to the occupation number
density \( y) in the continuous system by p~ s=�Is

dy \( y)=[\(sL�M ) 2y+
o(2y)] and by inserting this in the modified form of Eq. (3.16) we obtain in
the limit M � � (2y � 0) the Percus functional

;F[\]=|
L

0
dy \( y)[u( y)&++log \( y)&[1+log(1&t( y))]] (3.20)
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where t( y)=� y
y&_ dz \(z). To consider Eq. (3.20) as a mass density functional

one should remember the relation \mass( y)=t( y+_�2)=� y+_�2
y&_�2 dz \(z)

between the mass and the number density (that might be easily inverted by
Laplace transformation).

4. DENSITY PROFILES AND PAIR CORRELATIONS NEAR
WALLS

In this section we calculate density profiles and correlations for some
cases to exemplify the formalism developed in the previous Sections 2 and 3.

Figure 1 shows the occupation probability p�(l ) for a system of hard
rods as a function of the distance l from a hard wall for (a) p� =0.1 and
various (half ) rod lengths m=2, 3, 4, and (b) p� =0.02 and m=14, 18, and
22 ( p�(l ) was calculated from Eqs. (2.4, 2.15)). As can be seen from the
figure, p�(l ) exhibits oscillations with a period of order 2m, which become
more pronounced with increasing m. For large l, p�(l ) approaches p� . Note
that for p� =0.1 the closed packed situation occurs already at m=5 and the
discreteness of the system is important (see Fig. 1a), while p� =0.02 (Fig. 1b)
corresponds to a continuum situation. The data in Fig. 1b indicate that
p�(l ) in the continuum limit (see Sect. 3.2) might have a discontinuity in
the first derivative at the first minimum. Indeed this discontinuity occurs
and its origin can be understood from the solution of the discrete system:
From Eq. (2.15) and the recursion relation (2.4) one derives

p�(l )=s0p�(l&1)+(1&s0) p�(l&2m) (4.1)

Accordingly, when l<4m, the second term in (4.1) is zero up to the first
minimum in p�(l ) at l=4m&1, and it first contributes when l=4m. The
additional contribution from the second term yields the discontinuity in the
first derivative.

The correlation function

C(l )#p2, �(2m, l )& p�(2m) p�(l ) (4.2)

between the first possible position 2m of a rod center and another rod
center that is at distance l from the wall is shown in Fig. 2 for the same
parameters as in Fig. 1. Similar as p�(l ), C(l ) oscillates as a function of l
with a period of order 2m; the strength of the oscillations increases with
increasing m. For large l, the absolute values of C(l ) at its local maxima
and minima decrease exponentially with l.
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File: 822J 250616 . By:XX . Date:05:04:00 . Time:14:30 LOP8M. V8.B. Page 01:01
Codes: 1292 Signs: 690 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Occupation probability p�(l ) of hard rod centers as a function of the distance l from
a hard wall for (a) three small rod lengths and a large number density p� =0.1, and (b) three
large rod lengths and a small mean occupation number p� =0.02 corresponding to a con-
tinuum-like situation. The solid lines in (a) were drawn as a guide for the eye.

Next we calculate density profiles and correlations for more general
cases. To this end we consider (i) hard rods (v(l )=vHR(l )) in the presence
of a ``soft wall'' with an attractive potential

;u0(l )# &5 exp(&l�20) (4.3)

and (ii) particles with a Lennard�Jones type Takahashi interaction of the
form

� l<2m
;vLJ(l )#{&4 2m�l�3m (4.4)

0 else
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File: 822J 250617 . By:XX . Date:05:04:00 . Time:14:30 LOP8M. V8.B. Page 01:01
Codes: 1755 Signs: 1331 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Correlation function C(l ) between the first possible position 2m of a rod center and
another rod center that is at distance l from the wall (see Eq. 4.2)) for the same parameters
as in Figs. 1a, b. The solid lines in (a) were drawn as a guide for the eye.

in the presence of a hard wall (u(l )=0). Figure 3 shows p�(l ) for these
two cases in comparison with the hard rod system for (a) m=4 and (b)
m=18 (to calculate p�(l ) for u(l )=u0(l ) we have chosen a large system
size M=104 and used Eqs. (2.4), (2.7)). For both cases oscillations occur
similar as in the hard rod system. In Fig. 3a the attractive wall potential
causes the maxima and minima to become more pronounced than in the
other cases, while in Fig. 3b only the occupation probability for the first
rod next to the wall is strongly enhanced. Because the first rod center is
strongly attracted by the wall, the position of the following minima and
maxima of p� are shifted toward the wall. The weaker effects of the exter-
nal potential in the continuum-like situation (Fig. 3b) are due to the fact
that the first minimum of p�(l ) occurs at a position, where u0(l ) is already
very small. For the Lennard�Jones type interaction we find the oscillations
in Fig. 3a to be stronger than in the hard rod system, but the probability
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Fig. 3. Occupation probability p�(l ) of rod centers as a function of the distance l from a
wall for (i) hard rods in the presence of a hard wall (v=vHR , u=0), (ii) hard rods in the
presence of a soft wall (v=vHR, u=u0), and (iii) rods with a Lennard�Jones type Takahashi
interaction in the presence of a hard wall (v=vLJ , u=0). In (a) the discrete nature of the
lattice is important (m=4, p� =0.1), while in (b) the data correspond to a continuum-like
situation (m=18, p� =0.02). The solid lines in (a) were drawn as a guide for the eye.

of the first rod to be right at the wall is reduced (for smaller m, however,
p�(2m) can be larger than in the hard rod system). As can be seen from
Figs. 4a, b, the changes of the correlation functions caused by the external
potential u0(l ) and by the interaction potential vLJ(l ) are fully analogous to
the changes found for p�(l ) in Figs. 3a, b.

5. SUMMARY

As demonstrated in Section 4, the recursion relations derived in Sec-
tion 2 provide an efficient method to determine density distributions and
correlations in the Takahashi lattice gas for arbitrary interactions and
external potentials. We have proven in Appendix A that the wall-induced
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Fig. 4. Correlation function C(l ) between the first possible position 2m of a rod center and
another rod centered that is at distance l from the wall (see Eq. (4.2)) for the same parameters
as in Figs. 3a, b. The solid lines in (a) were drawn as a guide for the eye.

density oscillations decay exponentially into the bulk, if the interaction
potential has a finite range. If the potential has no finite range but still
decays to zero when the inter-particle distance increases toward infinity,
one can show only that the density for large distances from the wall con-
verges to a constant bulk value.

In the special case of the hard rod lattice gas, we have rederived the
exact free energy functional of the occupation probabilities and the
associated nonlinear system of coupled nonlinear difference equations. The
general formalism derived in Section 2 allowed us to give a solution of
these nonlinear difference equations in terms of the solution of a system
of independent linear equations. Furthermore, various central regions
between the confining walls have been specified in the canonical ensemble,
where the occupation probabilities are constant, and where the correlations
functions are translationally invariant or even constant too. In the grand
canonical ensemble it was shown that such regions do not exist (except for
trivial cases, see above).

It is possible to extend the calculations for the hard rod system to
more general situations, as, for example, to systems where certain groups
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of particles have differing rod lengths, or even to systems with randomly
distributed rod lengths.

APPENDIX A

For |s|<1 and * # (0, �) the generating functions of the canonical
and grandcanonical partition functions are (compare with Eq. (2.11))

H(N, s)= :
�

M=0

Z(N, M ) sM=
.(s)N+1

s
(A.1)

G(*, s)= :
�

M=0

0(*, M ) sM=
.(s)

s[1&*.(s)]

with

.(s)= :
�

l=1

exp[&v(l )] sl (A.2)

where v(l ) has the following properties

(i) max
l*�l<�

|v(l )|<� for some l
*

<�
(A.3)

(ii) lim
l � �

v(l )=0

Lemma A.1 (See also ref. 24). For given * # (0, �), there exists
exactly one real positive solution s0(*) # (0, 1) of 1&*.(s)=0 and this
root is simple. If sj # C is another root of 1&*.(s)=0, then |sj |>s0 .

Proof. The series ��
l=1 |exp[&v(l )] sl| converges for |s|<1, and

accordingly .$(s)=��
l=1 l exp[&v(l )] sl&1>0 for positive real s. Since

.(0)=0 and .(1)=�, there exists exactly one s0 # (0, 1), for which .(s0)
=1�* (with multiplicity one). If sj were another root of 1&*.(s)=0 with
|sj |<s0 , then |.(sj )|�.( |s j | )<.(s0)=1�*=.(sj ), which is impossible.
If sj=s0 exp(i%) with % # (0, 2?) we have to require ��

l=1 exp[&v(l )] s l
0

[1&cos(l%)]=0 and hence %=2?k, k # Z, in contradiction to the assump-
tion % # (0, 2?).

Theorem A.1. Let s0(*) # (0, 1) be the unique real positive solution
of 1&*.(s)=0. Then

0(*, M )tc0(*) s0(*)&M, for M � � (A.4)

where c0(*)=.(s0)2�s2
0 .$(s0).
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Proof. Let ak#0(*, k&1) sk
0 and fk#exp[&v(k)] sk

0 ���
l=1 exp

[&v(l )] s l
0 , for k=1, 2,..., and set *=1�.(s0). Then, according to

Eq. (2.4),

aM=.(s0) fM+ :
M&1

l=1

fM&l al= :
M

l=1

aM&l fl (A.5)

where a0#.(s0). Obviously, fl�0 and ��
l=1 f l=1. By employing the

renewal theorem(25) it follows

aMt
a0

��
l=1 lfl

for M � � (A.6)

Since ��
l=1 lf l=s0 .$(s0)�.(s0), we obtain 0(*, M )=aM+1s&(M+1)

0 t

.(s0)2 s&M
0 �s2

0.$(s0)=c0(*) s&M
0 for M � �.

Corollary A.1.

(i) p�(l; *)#limM � � p~ (l; *, M )=*0(*, l&1) s l
0

(ii) ps, �(l1 ,..., ls ; *)#limM � � p~ s(l1 ,..., ls ; *, M )= p�(l1 ; *) >s
k=2 p�

(lk&lk&1 ; *)

(iii) p� =.(s0)�s0.$(s0), where p� =limM � � N(*, M )�M. (N(*, M ) is
the mean number of particles for given fugacity * and M.)

Proof. According to Eq. (2.10), p~ (l; *, M )=*0(*, l&1) 0(*, M&l )�
0(*, M ) such that p~ (l; *, M )t*0(*, l&1) c0(*) s&(M&l )

0 �c0(*) s&M
0 =

*0(*, l&1) s l
0 by Theorem A.1. In particular, p�(l; *)=*0(*, l&1) s l

0 .
Analogously, using Eq. (2.9), ps, �(l1 ,..., ls ; *)=*s0(*, l1&1) >s

k=2 0(*, lk

&lk&1&1) s ls
0 . Since ls=l1+�s

k=2 (lk&lk&1), we can write ps, �(l1 ,...,ls ; *)
=*0(*, l1&1) s l1

0 >s
k=2 [*0(*, lk&lk&1&1) s lk&lk&1

0 ], which together with
(i) gives (ii). By definition and Theorem A.1, N(*, M )=*� log 0(*, M )��*
t*� log[c0(*) s0(*)&M]��*, from which follows p� =&*s$0(*)�s0(*). But
from *.(s0(*))=1 we immediately obtain &*s$0(*)�s0(*)=.(s0)�s0.$(x0)
and hence (iii).

Theorem A.2. Let NM # N be any sequence with limM � � NM �M
=p� . Then

(i) p�(l )#limM � � p(l; NM , M )= p�(l; *)=*0(*, l&1) s l
0

(ii) limM � � ps(l1 ,..., ls ; NM , M )= ps, �(l1 ,..., ls ; *)= p�(l1 ; *) >s
k=2

p�(lk&lk&1 ; *),

where *=1�.(s0) and s0 is the unique positive solution of .(s0)�
s0.$(s0)= p� .
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Proof. In order to derive the asymptotic limit of the occupation
probability

p(l; NM , M )= :
l

r=1

Z(r&1, l&1)
Z(NM&r, M&l )

Z(NM , M )
(A.7)

in the thermodynamic limit, we use (see Theorem 6.1 in ref. 26)

Z(NM&1, M&1)=
.(sM)NM

_M sM
M(2?NM)1�2 [1+O(M &1)] for M � �

(A.8)

where _2
M=�2

u[log .(sMeu)]u=0 and sM is the unique real positive solution
of NM �M=.(s)�s.$(s).

We further define s~ M as the unique real positive root of (NM&r)�(M&l )
=.(s)�s.$(s) (for r, l given integers) and _~ 2

M=�2
u[log .(s~ Meu)]u=0 . Then

it is easy to show that there exist sequences ;M and #M converging to finite
values for M � � with the property

s~ M=sM _1+
;M

M
+O(M&2)& , _~ M=_M _1+

#M

M
+O(M&2)& (A.9)

(For example, ;M=(l&r) f (sM)�sM f $(sM) with f (s)=.(s)�s.$(s) has the
desired properties.) Replacing NM by NM&r, M by M&l, sM by s~ M , as
well as _M by _~ M in Eq. (A.8), and using Eq. (A.9), we obtain after simple
calculations

Z(NM&r&1, M&l&1)

=Z(NM&1, M&1) s l
M .(sM)&r [1+O(M &1)] for M � �

(A.10)

Taking the limit M � � in Eq. (A.7) we thus get (note that
limM � � sM=s0)

lim
M � �

p(l; NM , M )= :
l

r=1

Z(r&1, l&1) .(s0)&r s l
0=*0(*, l&1) s l

0 (A.11)

The proposition (ii) follows by using the asymptotic form of
Z(NM&r, M&l ) (Eq. (A.10) in formula (2.8)).
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APPENDIX B

For |s|<1 and * # (0, �) let

G(*, s)=
P(*, s)
Q(*, s)

= :
�

M=0

0(*, M ) sM=
s2m&1

[1&s&*s2m]
(B.1)

be the generating function from Eq. (2.11) for the special case of the hard
rod interaction potential defined in Eq. (3.1).

Lemma B.1. The roots s0 ,..., s2m&1 of the polynomial Q(*, s) are
all distinct.

Proof. For one of the roots si not to be simple, we must require that
both Q(*, si )=0 and (�Q(*, s)��s)s=si

=0. But if (�Q(*, s)��s)s=si
=0, we

have s2m&1
i =&1�2m* and inserting this result into Q(*, si )=0 we obtain

si=2m�(2m&1)>0, i.e., a positive real number. On the other hand, the
only real solution of s2m&1=&1�2m* is negative, which is a contradiction.
Hence all roots must be simple.

Let

p�(l, *)= p� + :
2m&1

j=1

cj (*) \ s0

|sj |+
l

e&i%j l

= :
[l�2m]

r=1
\l&1&(2m&1) r

r&1 +(1&s0)r s l&2mr
0

be the occupancy probability in the thermodynamic limit, where [x]
denotes the integer part of x (see Eq. (3.4), and Eqs. (2.14), (2.15), (3.3),
and note that .(s0)=s2m

0 �(1&s0)).

Lemma B.2. For *�=1�.(s0)=(1&s0) s&2m
0 with s0=(1&2mp� )�

[1&(2m&1) p� ], p� =N�M (0<p� <1�2m), and l 2�M2=o(M&1)

(i) p(l; N, M )= p�(l; *�)[1+O(l 2�M )]

(ii) ps(l1 ,..., ls=l; N, M )= ps, �(l1 ,..., ls=l; *�)[1+O(l 2�M )]

Proof. According to Eqs. (2.6),

p(l; N, M )= :
N

r=1

Z(r&1, l&1)
Z(N&r, M&l )

Z(N, M )
(B.2)
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With the definition

f (x, y)#log \ &M+x
p� M+ y+ (B.3)

where &=1&(2m&1) p� , and x, y are integers, we can write (see the results
for Z(N, M ) in Eq. (3.3))

Z(N&r, M&l )
Z(N, M )

=exp[ f ((2m&1)(r&1)&l, &r)& f (&(2m&1), 0)]

(B.4)

If x, y=O(l ) we obtain, by applying Stirling's formula, n !=
(2?n)1�2 (n�e)n exp[O(1�n)],

f (x, y)=
1
2

log \ &
2?p� (&& p� ) M++M[& log &&(&& p� ) log(&& p� )& p� log p� ]

+x log &&(x& y) log(&& p� )& y log p� +O \ l 2

M+ (B.5)

Note that the sum over r in Eq. (B.2) runs at most up to the integer part
of l�2m, such that the arguments of the f functions appearing in Eq. (B.4)
are all of order O(l ). Accordingly,

Z(N&r, M&l )
Z(N, M )

=(1&s0)r s (l&2mr)
0 [1+O(l 2�M )] (B.6)

from which we obtain (i) by using Eq. (B.2).
Analogously, starting with Eq. (2.8),

ps(l1 ,..., ls ; N, M )= :
1�r1< } } } <rs�N

Z(r1&1, l1&1)

_ `
s&1

k=1

Z(rk+1&rk&1, lk+1&lk&1)
Z(N&rs , M&ls)

Z(N, M )

(B.7)

and again using Eq. (B.6) for the asymptotic behavior, we obtain (ii) after
straightforward algebra.
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Lemma B.3. Let * be the unique fugacity corresponding to given
mean number density p� # (0, 1�2m), and *�=1�.(s0)=(1&s0) s&2m

0 with
s0=(1&2mp� )�[1&(2m&1) p� ]. Then for l�M=o(1),

(i) p~ (l; *, M )= p�(l; *�)[1+O(l�M )]

(ii) p~ s(l1 ,..., ls=l; *, M )= ps, �(l1 ,..., ls=l; *�)[1+O(l�M )]

Proof. According to Eq. (2.10)

p~ (l; *, M )=*0(*, l&1)
0(*, M&l )

0(*, M )
(B.8)

where 0(*, M )=�2m&1
j=0 cj (*) sj (*)&M (see Lemma B.1 and the discussion

after Eq. (2.11)). In order to find the asymptotic behavior for M � �,
one has to keep in mind that * depends on M. Let us denote by *M

the fugacity corresponding to the mean number density p� in a system of
(finite) size M, i.e., the unique solution of p� =*M&1 � log 0(*, M )��* (see
Corollary A.1). In leading order *M approaches *� as

*M=*� _1+
b
M

+O \ 1
M2+& (B.9)

where b is a constant independent of M. The proof of this relation can be
worked out by writing *M=*�+=M with limM � � =M=0,4 and inserting
this into the determining equation for *M . Careful expansion of the coef-
ficients cj (*M) and the powers sj (*M)&M with respect to =M in the expres-
sion for 0(*M , M ) then yields limM � � =MM=b*� and limM � �[=M&
b*� �M] M2=const.

Using Eq. (B.9) we find

0(*M , M&l )=exp(bp� ) c0(*�) s0(*�)&(M&l ) _1+O \ l
M+& (B.10)

and thus obtain 0(*, M&l )�0(*, M)=s0(*�) l [1+O(l�M)]. Since
*M 0(*M , l&1)=*�0(*� , l&1)[1+O(l�M )], it follows (i) from Eq.
(B.8). Analogously, (ii) follows by using Eq. (2.9) and the asymptotic
expansion (B.10).
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Theorem B.1. If (M&1)&(4m&2) N>0 then the occupation
probability p(l; N, M ) is independent of l for all l # R1#[l # N | l (1)�l�
M+1&l (1)], with l (1)#(2m&1) N+1, i.e. we can write p(l; N, M)=
u� (N, M)�Z(N, M). At the outer boundary points l (&)#l (1)&1 and l (+)#
M+2&l (1), p(l (�); N, M ) is different from p(l; N, M ) inside R1 , in par-
ticular p(l (�); N, M )=[u� (N, M )+(&1)N]�Z(N, M ).

Proof. Given p(l; N, M ) from Eq. (2.6) we first show that

u(l; N, M )# :
N

r=1

Z(r&1, l&1) Z(n&r, M&l )

(B.11)

Z(r, l )=\l&(2m&1)(r+1)
r +

is constant inside R1 as long as (M&1)&(4m&2) N>0. To this end we
will proof that u(l; N, M ) for l # R1 can be rewritten by use of the following
combinatorial identity

u(l; N, M )= :
N

r=1
\l&1&(2m&1) r

r&1 +\M&l&(2m&1)(N+1&r)
N&r +

=\M+1&4m&(2m&1)(N&1)
N&1 +

& :
N

r=2

(&1)r \2m(r&1)&1
r&1 +\M+1&4m&(2m&1)(N&r)

N&r +
#u� (N, M ) (B.12)

which is independent of l.
To verify the combinatorial formula we follow the methods described

in the book of Riordan on combinatorial identities(27) and use the follow-
ing theorem of Lagrange for implicit functions:(28) Let ,(z) be a power
series in z with ,(0){0, and let z(t) be the unique power series with
z(0)=0 satisfying the implicit equation z(t)=t,(z(t)). Then, for any power
series F(z),

F(z)
(1&t8$(z))

= :
�

n=0

tn

n!
d n

d*n [F(*) 8(*)n] | *=0 (B.13)

Applying this theorem to ,(z)=(1+z)&; and F(z)=(1+z): with |z|<1
and :, ; # N one obtains
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(1+z):+1

1+(;+1) z
= :

�

n=0

|(:, n) tn

|(:, n)={\
:&;n

n + ,

(&)n \(;+1) n&:&1
n + ,

0�n�
:
;

n>
:
;

(B.14)

Using (B.14) we can write

(1+z):+#+2

[1+(;+1) z]2=_ (1+z)
1+(;+1) z&_

(1+z):+#+1

1+(;+1) z&
= :

�

n=0

|(0, n) tn :
�

n=0

|(:+#, n) tn (B.15)

and

(1+z):+#+2

[1+(;+1) z]2=_ (1+z):+1

1+(;+1) z&_
(1+z)#+1

1+(;+1) z&
= :

�

n=0

|(:, n) tn :
�

n=0

|(#, n) tn (B.16)

Comparing (B.15) with (B.16) and equating expansion coefficients we obtain

:
n

k=0

|(0, k) |(:+#, n&k)= :
n

k=0

|(:, k) |(#, n&k) (B.17)

In particular, for n�min[[:�;]; [#�;]] (see Eq. (B.14)),5

:
n

k=0
\:&;k

k + \#&;(n&k)
n&k +

=\:+#&;n
n ++ :

n

k=1

(&1)k \(;+1) k&1
k + \:+#&;(n&k)

n&k +
(B.18)

By setting n=N&1, k=r&1, ;=2m&1, :=l&2m, and #=M+1&
2m&l for l # R1 (i.e., for (2m&1) N+1�l�M&(2m&1) N ), we have
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Gamma function.



N&1�min[[(l&2m)�(2m&1)], [(M+1&2m&l)�(2m&1)]], and can
use Eq. (B.18) to get Eq. (B.12).

In order to show that R1 is a ``maximal'' set, we again use Eq. (B.17)
with :=l (�)&2m, ;=2m&1, #=M+1&2m&l (�), n=N&1 and r=
k&1 (note that due to symmetry, we can restrict ourselves to :=l (&)&2m
and #=M+1&2m&l (&), so that n&1�:�;, n>:�;, n�#�; with
|(#, 0)=1 and |(:�n)=(&1)n) to obtain

u(l (�); N, M )=u� (N, M )+(&1)N (B.19)

This completes the proof of theorem B.1.

Corollary B.1. For M+1�6m (that means there can be more
than just one rod in the system) there does not exist a central region where
p~ (l; *, M ) is constant (except for the trivial set R� 1=[M�2, M�2+1] for
even M ).

Proof. Assume that there exist a non-trivial central region R� 1=
[l0 ,..., M+1&l0] with 2m�l0�(M&1)�2 in which p~ (l; *, M ) is constant.
Then there exists a function

f (*, M )=*0(*, l&1) 0(*, M&l ) (B.20)

independent of l for all l # R� 1 .
From

*0(*, l&1) 0(*, M&l )= :
N0

N=1

Z(N, M ) p(l, N, M ) *N (B.21)

for N0=max[N�1; Z(N, M )>0]=[(M+1)�2m]&1 (note that
Z(N, M )=( M&(2m&1)(N+1)

N )), we get

p(l, N, M )=
1

Z(N, M ) N !
�N f (*, M )

�N* } *=0

=const (B.22)

for all l # R� 1 and all 1�N�N0 . But, according to Theorem B.1, we have
p(l, N, M )=const in a central region if and only if l # R1 . Therefore,

R� 1�R1=[(2m&1) N+1,..., M&(2m&1) N ] for 1�N�N0

(B.23)

Choosing N=N0 (and because we require R� 1 to have more than two
elements for excluding trivial situations), we obtain

(2m&1) N0+4�M+1&(2m&1) N0 (B.24)
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from which one readily concludes that M+1�6m&1 in contradiction to
the restriction imposed on M.

Comment. One can even show (18) that there does not exist any
non-trivial region inside which p~ (l; *, M ) is constant.

Theorem B.2. If M&1&(4m&2) N+2(m&1)(s&1)>0 then the
joint probabilities ps(l1 ,..., ls ; N, M ) are translationally invariant for
(l1 ,..., ls) # Rs=[(l1 ,..., ls) # Ns | l (s)�l1 ; 2m�lk&lk&1 for k=2,..., s; ls�
M+1&l (s)] with l (s)#(2m&1)(N+1&s)+1, i.e., there exists a function
f ( y1 ,..., ys&1 ; N, M ) exhibiting the property

ps(l1 ,..., ls ; N, M )= f (l2&l1 ,..., ls&ls&1 ; N, M ) (B.25)

If (l1 ,..., ls) � Rs and (l1 ,..., lr\1,..., ls) # Rs for some { # [1,..., s] then

ps(l1 ,..., ls ; N, M )= f (l2&l1 ,..., ls&ls&1 ; N, M )+(&1)N+1&s�Z(N, M )

(B.26)

Proof. The joint probabilities p(l1 ,..., ls ; N, M ) are given by (see
Eq. (2.8))

ps(l1 ,..., ls ; N, M )= :
1�r1< } } } <rs�N

Z(r1&1, l1&1) Z(N&rs , M&ls)
Z(N, M )

_ `
s

k=2

Z(rk&rk&1&1, lk&lk&1&1) (B.27)

By introducing new variables x1=r1 , xk=rk&rk&1 for k=2,..., s
(�s

k=1 xk=rs) we can rewrite this as

ps(l1 ,..., ls ; N, M )

= :
(x1 ,..., xs) # AN, s

Z(x1&1, l1&1) Z(N&�s
i=1 xi , M&ls)

Z(N, M )

_ `
s

k=2

Z(xk&1, lk&lk&1&1)

=Z(N, M )&1 :
(x2 ,..., xs) # AN&1, s&1

{ `
s

k=2

Z(xk&1, lk&lk&1&1)

_ :
N&�s

i=2 xi

x1=1

Z(x1&1, l1&1) Z \N& :
s

i=2

xi&x1 , M&ls+= (B.28)

where AN, s#[(x1 ,..., xs) # Ns | x1+ } } } +xs�N ].
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Setting N$=N&�s
i=2 xi and M$=M&(ls&l1), we have from

Theorem B.1 (see Eq. (B.11))

:
N$

x1=1

Z(x1&1, l1&1) Z(N$&x1 , M$&l1)=u(l1 ; N$, M$) (B.29)

where u(l1 ; N$, M$)=u� (N$, M$)=const for (2m&1) N$+1�l1�M$&
(2m&1) N$. For the xi this means (2m&1)(N&�s

i=2 xi )+1�l1�M&
(ls&l1)&(2m&1)(N&�s

i=2 x i ). The latter inequality holds true for all
(x2 ,..., xs) # AN&1, s&1 , if (2m&1)(N+1&s)+1�l1 and ls�M&
(2m&1)(N+1&s), i.e., for (l1 ,..., ls) # Rs . Since (ls&l1)=�s

k=2 (lk&lk&1)
we obtain

p(l1 ,..., ls ; N, M )= :
(x2 ,..., xs) # AN&1, s&1

`
s

k=2

Z(xk&1, lk&lk&1&1)

_
u� (N&�s

i=2 xi , M&�s
i=2 (l i&li&1))

Z(N, M )

# f (l2&l1 ,..., ls&ls&1 ; N, M ) (B.30)

which completes the proof of the first part of the theorem.
To prove the second part, we insert Eq. (B.29) in Eq. (B.28) and con-

sider an outer boundary point with (l1 ,..., ls) � Rs and (l1 ,..., l{\1,..., ls) # Rs

for some { # [1,..., s]. In fact, according to the constraints implied by the
finite rod lengths, one can show that only {=1 and {=s are possible. Due
to symmetry we can restrict ourselves to the case {=1. Then the outer
boundary point is (l1=l (s)&1, l2 ,..., ls) and we obtain

ps(l1=l (s)&1,..., ls ; N, M )

=
1

Z(N, M )
:

AN&1, s&1
{ `

s

k=2

Z(xk&1, lk&lk&1&1) u(l1 ; N$, M$)=l1=l (s)&1

(B.31)

Except for the particular configuration (x2=1,..., xs=1), all configurations
(x2 ,..., xs) # AN&1, s&1 yield arguments (l1 , N$, M$) for which u(l1 , N$, M$)
is constant (see the discussion above). For (x2=1,..., xs=1), l1 is an outer
boundary point of the set R1 corresponding to a system of size M$ with N$
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rods. According to Theorem B.1 we thus have u(l1 , N$, M$)=u� (N$, M$)+
(&1)N$. By inserting these results in Eq. (B.31) and by using the definition
of f ( y1 ,..., ys&1 ; N, M ) in Eq. (B.30) we obtain

ps(l1=l (s)&1,..., ls ; N, M )= f (l2&l (s)+1,..., ls&ls&1 ; N, M )+
(&1)N+1&s

Z(N, M )

(B.32)

Corollary B.2. For (l1 ,..., ls) � Cs#[(l1 ,..., ls) # Ns | 2m�l1<4m,
2m�lk&lk&1 for k=1,..., s; M+1&4m<ls�M+1&2m] (see footnote 1
in Section 3.2) there does not exist a region, where p~ s(l1 ,..., ls ; *, M ) is
translationally invariant.

Proof. If p~ s(l1 ,..., ls ; *, M )= f� (l2&l1 ,..., ls&ls&1 ; *, M ) for some
(l1 ,..., ls) � Cs then, from Eq. (2.9),

0(*, l1&1) 0(*, M$&l1)=
0(*, M )

*s f� (l2&l1 ,..., ls&ls&1 ; *, M )

_ `
s

k=2

1
0(*, lk&lk&1&1)

(B.33)

where M$=M&(ls&l1). Accordingly, there exists a range of consecutive l1

values, where 0(*, l1&1) 0(*, M$&l1) is independent of l1 . This, however,
is impossible due to the comment after Corollary B.1.

Theorem B.3. If M&2(2m&1)(N+1&s)�0 then the joint
probabilities ps(l1 ,..., ls ; N, M ) are constant functions for (l1 ,..., ls) # Bs#
[(l1 ,..., ls) # Ns | (2m&1)(N+1&s)+2�l1 ; (2m&1)(N+1&s)+1�
lk&lk&1 for k=2,..., s; ls�M&(2m&1)(N+1&s)], i.e., we can write
ps(l1 ,..., ls ; N, M )=v� (N, M ). If (l1 ,..., ls) � Bs and (l1 ,..., l{\1,..., ls) # Bs for
some { # [1,..., s] then

ps(l1 ,..., ls ; N, M )=v� (N, M )+
(&1)N+1&s

Z(N, M )
(B.34)

Proof. The explicit formula (see Eqs. (2.8), (3.3)

Z(N, M ) ps(l1 ,..., ls ; N, M )

= :
(x1 ,..., xs) # AN, s

\l1&1&(2m&1) x1

x1&1 +
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_\
M+1&2m&ls&(2m&1) \N& :

s

i=1

xi+
N&s& :

s

i=1

xi +
_ `

s

k=2
\lk&lk&1&1&(2m&1)(xk&xk&1)

xk&xk&1&1 + (B.35)

can be rewritten by using Eq. (B.14) derived in Theorem B.1 (remember
that we defined AN, s=[(x1 ,..., xs) # Ns) | x1+ } } } +xs�N ] after Eq. (B.28)).
We have for :i�0, i=1,..., s+1, and En, s#[(n1 ,..., ns) # Ns

0 | n1+ } } } +
ns=n],

(1+z):1+ } } } +:s+1+s+1

[1+(;+1) z]s+1 = `
s+1

k=1

:
�

nk=0

|(:k , nk) tnk

= :
�

n=0

tn :
(n1 ,..., ns+1) # En, s+1

`
s+1

k=1

|(:k , nk) (B.36)

and

(1+z):1+ } } } +:s+1+1 (1+z)s

[1+(;+1) z]1 [1+(;+1) z]s

= `
�

n1=0

|(:1+ } } } +:s+1 , n1) tn1 `
s+1

k=2

:
�

nk=0

|(0, nk) tnk

= :
�

n=0

tn :
En, s+1

|(:1+ } } } +:s+1 , n1) `
s+1

k=2

|(0, nk) (B.37)

Comparing (B.36) and (B.37) and equating coefficients we obtain

:
(n1 ,..., ns+1) # En, s+1

`
s+1

k=1

|(:k , nk)

= :
(n1 ,..., ns+1) # En, s+1

|(:1+ } } } +:s+1 , n1) `
s+1

k=2

|(0, nk) (B.38)

which, for n�min1�k�s+1[[:k �;]] (see Eq. (B.14)), yields

:
En, s+1

`
s+1

k=1
\:k&;nk

nk +
= :

En, s+1
\:1+ } } } +:s+1&;n1

n1 + `
s+1

k=2

(&1)nk \(;+1) nk&1
nk + (B.39)
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We have defined ( &1
0 )=1 on the right side here (but not on the left hand

side).
By choosing :1=l1&2m, :k=lk&lk&1&2m for k=2,..., s, :s+1=

M+1&ls&2m, ;=2m&1 and n=N&s�min1�k�s+1[:k �;] (for all
(l1 , ..., ls) # Bs), we can identify the combinatorial expression (B.36) by the
left hand side of (B.39). Substituting the right hand side we then obtain

ps(l1 ,..., ls ; N, M )=Z(N, M )&1 :
(x1 ,..., xs) # AN, s

(&1)N&�s
i=<1 xi

_\
2m \N& :

s

i=1

x i+&1

N& :
s

i=1

x i + \M&2ms&(2m&1) x1

x1&1 +

_ `
s

k=2

(&1)xk&1 \2m(xk&1)&1
xk&1 +

#v� (N, M ) (B.40)

which completes the proof of the first part of the theorem.
Now, let (l1 ,..., ls) � Bs and (l1 ,..., l{\1,..., ls) # Bs for a given

{ # [1,..., s], and l0=0 and ls+1=M+1. Then N&s�[:k �(2m&1)] for
k{{ and N&s&1=[:{ �(2m&1)], which can be shown by simple
topological considerations. Accordingly, for (n1 ,..., ns+1) # E$N&s, s+1#
EN&s, s+1"(n1=0,..., n{=N&s,..., ns+1=0), |(:k , nk)=( :k&(2m&1) nk

nk
), while

for the particular element (n1=0,..., n{=N&s,..., ns+1=0), |(:k , nk)=
(1&$k{)+(&1) (N&s) $k{ . Evaluating the left hand side of Eq. (B.38) we
arrive at

:
(n1 ,..., ns+1) # EN&s, s+1

`
s+1

k=1

|(:k , nk)

= :
(n1 ,..., ns+1) # E$N&s, s+1

`
s+1

k=1
\:k&(2m&1) nk

nk ++(&1)N&s

=Z(N, M ) ps(l1 ,..., ls ; N, M )+(&1)N&s (B.41)

On the other hand, the right hand side of Eq. (B.38) is equal to
Z(N, M ) v� (N, M ) and hence we obtain

ps(l1 ,..., ls ; N, M )=v� (N, M )+
(&1)N+1&s

Z(N, M )
(B.42)
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APPENDIX C

For 0�M$+:�M and :�0, 0(*; M$, :) is defined as follows (for
v(n)=vHR(n), see Section 3)

0(*; M$, :)=0, for M$<2m&1

0(*; M$, :)=1, for 2m&1�M$<4m&1 (C.1)

0(*; M$, :)=1+* :
M$+1&2m

r=2m

e&u(:+r)0(*, r&1, :), for M$�4m&1

Theorem C.1. The occupation probability

p~ (l; *, M )=*e&u(l ) 0(*; l&1, 0) 0(*; M&l, l )
0(*; M, 0)

(C.2)

is the unique solution of the following set of nonlinear coupled difference
equations

0=&log *+u(l )+log p~ l+ :
l+2m&1

s=l+1

log[1&tm(s)+ p~ s]

& :
l+2m&1

s=l

log[1&tm(s)] (C.3)

for l # [2m,..., M+1&2m] and p~ l=0 else, where tm(s)=�2m&1
j=0 p~ s& j .

Lemma C.1. Let M$�2m. If 0�M$+:�M and :�0, then
0(*; M$, :) obeys the recursion relations.

(i) 0(*, M$, :)=0(*; M$&1, :)+*&u(:+M$&2m+1)0(*; M$&2m, :),

(ii) 0(*, M$, :)=0(*; M$&1, :+1)+*e&u(:+2m)0(*; M$&2m,
:+2m),

Lemma C.2. For s�2m let

1&tm(s)=
0(*; s&1, 0)

0(*; M, 0)
,(*; M, s) (C.4)

Then ,(*; M, s) obeys for p~ s#p~ (s; *, M ) (from Eq. (C.2)) the relations

(i) ,(*; M, s)=0(*; M&s+2m&1, s&2m+1),

(ii) ,(*; M, s&1)=,(*; M, s)+*e&u(s)0(*; M&s, s).
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Proof of Lemma C.1. For M$�4m&1

0(*; M$, :)=1+* :
M$&2m

r=2m

e&u(:+r)0(*; r&1, :)

+*e&u(:+M$&2m+1)0(*; M$&2m, :)

=0(*; M$&1, :)+e&u(:+M$&2m+1)0(*; M$&2m, :) (C.5)

If 2m�M$<4m&1, then 0(*; M$&1, :)=1 and 0(:; M$&2m, :)=0.
Hence, Eq. (C.5) is also valid for 2m�M$<4m&1, which implies (i).

According to (2.2),

Z(N, M$, :)= :
1�i1 ,...<iN�M$

exp &_ :
N

k=1

u(:+ik)+v(i1)

+ :
N

k=2

v(ik&ik&1)+v(M$+1&iN)&
= :

M$

l=1

e&u(:+l )&v(l )

_ :
l+1�i2 ,...<iN�M$

exp &_ :
N

k=2

u(:+ik)+v(i2&l )

+ :
N

k=3

v(ik&ik&1)+v(M$+1&iN)&
= :

M$

l=1

exp &[u(:+l )+v(l )]

_ :
1� j1< } } } < jN&1�M$&l

exp &_ :
N&1

k=1

u(:+l+ jk)+v( j1)

+ :
N&1

k=2

v( jk& jk&1)+v(M$&l+1&jN&1)&
= :

M$

l=1

e&u(:+l )e&v(l )Z(N&1, M$&l, :+l ) (C.6)
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Remembering that Z(0, M$, :)=e&v(M$+1) (see the remark right after
Eq. (2.3)), it holds

0(*, M$, :)= :
�

N=0

Z(N, M$, :) *N

=e&v(M$+1)+* :
M$

l=1

e&u(:+l )e&v(l ) 0(*, M$&l, :+l ) (C.7)

where v(n)=� for n<2m, and v(n)=0 for n�2m. Since
0(*, M$&l, :+l )=0 for M$&l<2m&1 we have

0(*, M$, :)=1+* :
M$

l=2m

e&u(:+l )0(*, M$&l, :+l ) (C.8)

which for r=M$&l yields

=1+* :
M$&1&2m

r=2m&1

e&u(:+M$&r)0(*; r, :+M$&r) (C.9)

Hence we finally obtain (ii),

0(*, M$, :)=1+* :
M$&2m

r=2m&1

e&u(:+M$&r)0(*; r, :+M$&r)

=1+* :
M$&2m

r=2m&1

e&u((:+1)+(M$&1)&r)0(*; r, (:+1)+(M$&1)&r)

+*e&u(:+2m)0(*; M$&2m, :+2m)

=0(*, M$&1, :+1)+*e&u(:+2m)0(*; M$&2m, :+2m)

(C.10)

Proof of Lemma C.2. We prove the proposition (i) by complete
induction with respect to s. For s=2m we have

,(*; M, 2m)=
0(*; M, 0)

0(*; 2m&1, 0)
[1&tm(2m)] (C.11)

With 0(*; 2m&1, 0)=1, tm(2m)=�2m&1
j=0 p~ 2m& j= p~ 2m (note that p~ i=0 for

i<2m, and p~ 2m=*e&u(2m)0(*; M&2m, 2m)�0(*; M, 0)) it follows

,(*; M, 2m)=0(*; M, 0)&*e&u(2m)0(*; M&2m, 2m) (C.12)
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For M$=M and :=0 we then obtain by using Lemma C.1 (ii)

0(*, M, 0)=0(*, M&1, 1)+*e&u(2m)0(*; M&2m, 2m) (C.13)

and hence

,(*; M, 2m)=0(*, M, 0)&*e&u(2m)0(*; M&2m, 2m)=0(*, M&1, 1)

(C.14)

Accordingly, proposition (i) is valid for s=2m. Let us now assume that (i)
holds true for s&1�2m&1.

Since tm(s)=�2m&1
j=0 p~ s& j and p~ l=*e&u(l )0(*; l&1, 0) 0(*; M&l, l )�

0(*; M, 0) we can write

,(*; M, s)=
0(*; M, 0)

0(*; s&1, 0)

__1& :
2m&1

j=0

e&u(s& j) *
0(*; s& j&1, 0) 0(*; M&s+ j, s& j)

0(*; M, 0) &
=

1
0(*; s&1, 0) _0(*; M, 0)&* :

2m&1

j=0

e&u(s& j)

_0(*; s& j&1, 0) 0(*; M&s+ j, s& j)&
=

1
0(*; s&1, 0) _0(*; M, 0)&* :

2m&1

j=0

e&u(s&1& j)0

_(*; s& j&2, 0) 0(*; M&s+1+ j, s&1& j)&
+

*
0(*; s&1, 0)

[e&u(s&2m)0(*; s&2m&1, 0)

_0(*; M&s+2m, s&2m)

&e&u(s)0(*; s&1, 0) 0(*; M&s, s)]

=
1

0(*; s&1, 0)
[0(*; s&2, 0) ,(*; M, s&1)

+*e&u(s&2m)0(*; s&2m&1, 0) 0(*; M&s+2m, s&2m)]

&*e&u(s)0(*; M&s, s) (C.15)

309Confined Takahashi Lattice Gases



where the line 3 follows from line 2 after some straightforward manipula-
tion of the sum over j, and line 4 from line 3 by definition of ,(*; M, s&1).

Due to the induction hypothesis, ,(*; M, s&1)=0(*; M&s+2m,
s&2m), from which follows

,(*; M, s)=
0(*; M&s+2m, s&2m)

0(*; s&1, 0)

_[0(*; s&2, 0)+*e&u(s&2m)0(*; s&2m&1, 0)]

&*e&u(s)0(*; M&s, s) (C.16)

By using (i) of Lemma C.1 for M$=s&1 and :=0 we obtain

0(*; s&1, 0)=0(*; s&2, 0)+*e&u(s&2m)0(*; s&2m&1, 0) (C.17)

and hence

,(*; M, s)=0(*, M&s+2m, s&2m)&*e&u(s)0(*; M&s, s) (C.18)

By using (ii) of Lemma C.1. for M$=M&s+2m and :=s&2m we find

0(*; M&s+2m, s&2m)

=0(*; M&s+2m&1, s&2m+1)+*e&u(s)0(*; M&s, s) (C.19)

and hence

0(*; M&s+2m, s&2m)&*e&u(s)0(*; M&s, s)

=0(*; M&s+2m&1, s&2m+1)

=,(*; M, s) (C.20)

This completes the proof of part (i) of Lemma C.2.
To proof the second part (ii), we apply (ii) of Lemma C.1. For

M$=M&s+2m and :=s&2m we obtain

0(*; M&s+2m, s&2m)

=0(*; M&s+2m+1, s&2m+1)+*e&u(s)0(*; M&s, s) (C.21)

Due to part (i) of the Lemma just proven, ,(*; M, s)=0(*; M&s+
2m&1, s&2m+1) and ,(*; M, s&1)=0(*; M&s+2m, s&2m). Insert-
ing this in (C.21) it follows proposition (ii).
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Proof of Theorem C.1. According to Lemma C.2. and the defini-
tions of p~ s and tm(s),

1&tm(s)+ p~ s=
0(*; s&1, 0)

0(*; M, 0)
[,(*; M, s)+*e&u(s)0(*; M&s, s)]

=
0(*; s&1, 0)

0(*; M, 0)
,(*; M, s&1) (C.22)

Since 0(*; s&1, 0)=0 for s<2m and 0(*; M&s, s)=0 for s>M+1&2m,
it follows p~ s=0 for s � [2m,..., M+1&2m]. For s # [2m,..., M+1&2m] on
the other hand, we obtain from Lemma C.2 and Eqs. (C.2), (C.3), (C.22)

0=&log *+u(l )+log _*e&u(l ) 0(*; s&1, 0) 0(*, M&l, l )
0(*; M, 0) &

+ :
l+2m&1

s=l+1

log _0(*; s&1, 0)
0(*; M, 0)

,(*; M, s&1)&
& :

l+2m&1

s=l

log _0(*; s&1, 0)
0(*; M, 0)

,(*; M, s)&
=log 0(*; M&l, l )&log ,(*; M, l+2m&1)

=0 (C.23)
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